AI
[AI] Recognize Anything 사용해보기1
dud9902
2025. 1. 9. 23:04
Recognize Anything이란?
이미지 안에 있는 거의 모든 대상을 인식하고 태그(Tag)할 수 있도록 설계된, 일종의 범용 시각 인식(Visual Recognition) 모델이다.
Recognize Anything 테스트 과정
1. inference_ram_plus.py 예제코드를 가져온다.
https://github.com/xinyu1205/recognize-anything
GitHub - xinyu1205/recognize-anything: Open-source and strong foundation image recognition models.
Open-source and strong foundation image recognition models. - xinyu1205/recognize-anything
github.com
'''
* The Recognize Anything Plus Model (RAM++)
* Written by Xinyu Huang
'''
import argparse
import numpy as np
import random
import torch
from PIL import Image
from ram.models import ram_plus
from ram import inference_ram as inference
from ram import get_transform
parser = argparse.ArgumentParser(
description='Tag2Text inferece for tagging and captioning')
parser.add_argument('--image',
metavar='DIR',
help='path to dataset',
default='images/demo/demo1.jpg')
parser.add_argument('--pretrained',
metavar='DIR',
help='path to pretrained model',
default='pretrained/ram_plus_swin_large_14m.pth')
parser.add_argument('--image-size',
default=384,
type=int,
metavar='N',
help='input image size (default: 448)')
if __name__ == "__main__":
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
transform = get_transform(image_size=args.image_size)
#######load model
model = ram_plus(pretrained=args.pretrained,
image_size=args.image_size,
vit='swin_l')
model.eval()
model = model.to(device)
image = transform(Image.open(args.image)).unsqueeze(0).to(device)
res = inference(image, model)
print("Image Tags: ", res[0])
print("图像标签: ", res[1])
2. git을 설치해준다.
install git
3. Recognize Anything 라이브러리를 설치해준다.
pip install git+https://github.com/xinyu1205/recognize-anything.git
4. model을 다운받는다.
5. 완성 코드
샘플 이미지도 깃허브에서 다운받아서 사용했다.
"""
* The Recognize Anything Plus Model (RAM++)
* Written by Xinyu Huang
"""
# STEP 1 : import modules
import numpy as np
import random
import torch
from PIL import Image
from ram.models import ram_plus
from ram import inference_ram as inference
from ram import get_transform
# STEP 2: create inference object
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = "ram_plus_swin_large_14m.pth"
model = ram_plus(pretrained=model_path,
image_size=384,
vit="swin_l")
model.eval()
model = model.to(device)
# STEP 3: Load data
image_path = "demo1.jpg"
transform = get_transform(image_size=384)
image = transform(Image.open(image_path)).unsqueeze(0).to(device)
# STEP 4: inference
res = inference(image, model)
# STEP 5: post processing
print("Image Tags: ", res[0])